
Microcontroller Peripherals

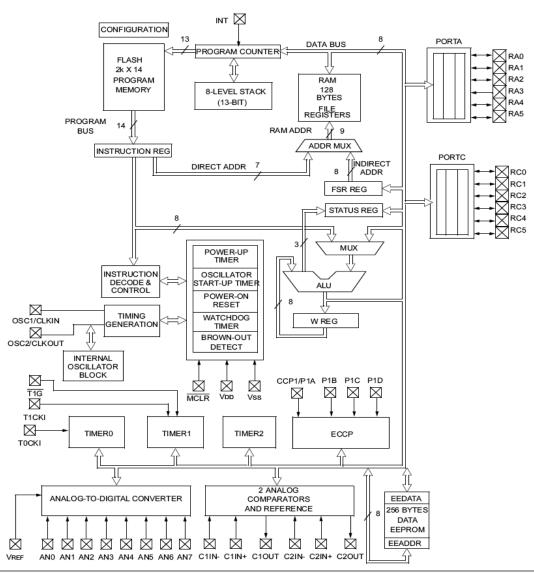
Overview of Microcontrollers

 Basically, a microcontroller is a device which integrates a number of the components of a microprocessor system onto a single microchip.

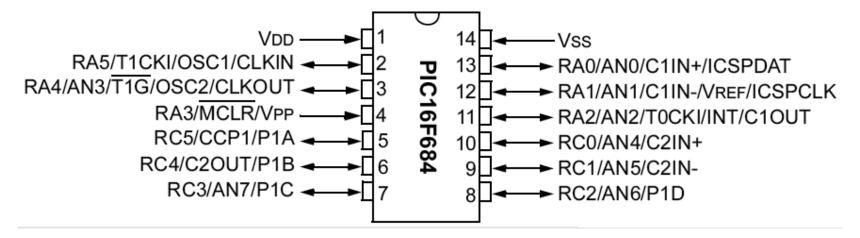
Reference: http://mic.unn.ac.uk/miclearning/modules/micros/ch1/micro01notes.html#1.4

Microcontroller features

- Processor
 - Usually general-purpose but can be app-specific
- On-chip memory
 - Often RAM for data, EEPROM/Flash for code
- Integrated peripherals
 - Common peripherals
 - Parallel I/O port(s)
 - Clock generator(s)
 - Timers/event counters
 - Special-purpose devices such as:
 - Analog-to-digital converter (sensor inputs)
 - Mixed signal components
 - Serial port + other serial interfaces (SPI, USB)
 - Ethernet

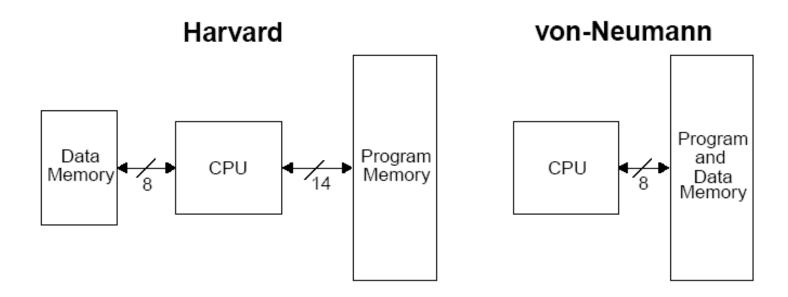

Microcontroller features

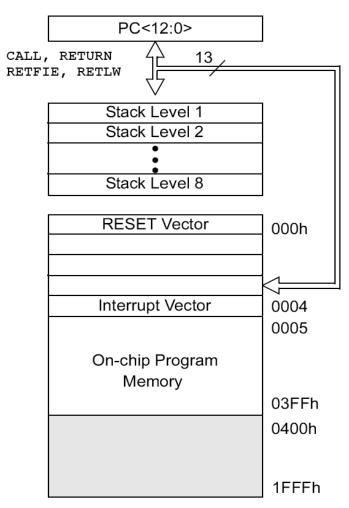
- Benefits
 - Typically low-power/low-cost
 - Target for embedded applications
 - Easily programmable
 - Simple ISAs (RISC processors)
 - Use of development kits simplifies process
- Limitations
 - Small storage space (registers, memory)
 - Restricted instruction set
 - May be required to multiplex pins
 - Not typically used for high performance


PIC Microcontroller (PIC16F684)

- High performance, low cost, for embedded applications
 - Only 35 different instructions
 - Interrupt capability
 - Direct, indirect, relative addressing mode
- Low Power
 - 8.5uA @ 32KHz, 2.0V
- Peripheral Features
 - 12 I/O pins with individual direction control
 - 10-bit A/D converter
 - 8/16-bit timer/counter
- Special Microcontroller Features
 - Internal/external oscillator
 - Power saving sleep mode
 - High Endurance Flash/EEPROM cell

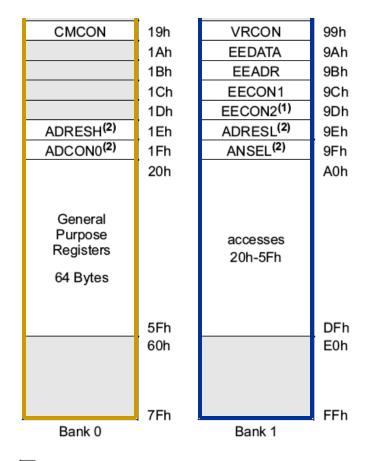
PIC16F684 Block Diagram


PIC16F684


 12 pins, 2048 instructions, 128 byte variable memory, ADC, comparator, Timers, ICD

Harvard vs Von Neumann

Organization of program and data memory


Program Memory Space

- 13-bit program counter to address 8K locations
- Each location is 14-bit wide (instructions are 14 bits long)
- RESET vector is 0000h
 - When the CPU is reset, its PC is automatically cleared to zero.
- Interrupt Vector is 0004h
 - 0004h is automatically loaded into the program counter when an interrupt occurs
- Vector → address of code to be executed for given interrupt

Data Memory Space

TMR0 01h OPTION_REG 81 PCL 02h PCL 82 STATUS 03h STATUS 83 FSR 04h FSR 84	0h 1h 2h 3h 4h 5h
PCL 02h PCL 82 STATUS 03h STATUS 83 FSR 04h FSR 84	2h 3h 4h 5h
STATUS 03h STATUS 83 FSR 04h FSR 84	3h 4h 5h
FSR 04h FSR 84	4h 5h
	5h
GPIO 05h TRISIO 85	
0110 0011 11(1010 00	3h
06h 86	
07h 87	7h
08h 88	8h
09h 89	9h
PCLATH 0Ah PCLATH 8A	Αh
INTCON 0Bh INTCON 8E	Bh
PIR1 0Ch PIE1 80	Ch
0Dh 80	Dh
TMR1L 0Eh PCON 8E	Eh
TMR1H 0Fh 8F	Fh
T1CON 10h OSCCAL 90	0h
11h 91	1h
12h 92	2h
13h 93	3h
14h 94	4h
15h WPU 95	5h
16h IOC 96	6h
17h 97	7h
18h 98	8h_

Unimplemented data memory locations, read as '0'.

Not a physical register. PIC12F675 only.

Special Function Registers

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value POR,	
Bank 0											
00h	INDF ⁽¹⁾	Addressing this Location uses Contents of FSR to Address Data Memory								0000	0000
01h	TMR0	Timer0 Mod	Timer0 Module's Register								xxxx
02h	PCL	Program Co	Program Counter's (PC) Least Significant Byte								0000
03h	STATUS	IRP ⁽²⁾	RP1 ⁽²⁾	RP0	TO	PD	Z	DC	С	0001	1xxx
04h	FSR	Indirect Data	Indirect Data Memory Address Pointer								xxxx
05h	GPIO	_	_	GPIO5	GPIO4	GPIO3	GPIO2	GPIO1	GPIO0	xx	xxxx
0Ah	PCLATH	_	_	_	Write Buffer for Upper 5 bits of Program Counter				0	0000	
0Bh	INTCON	GIE	PEIE	T0IE	INTE	GPIE	T0IF	INTF	GPIF	0000	0000
0Ch	PIR1	EEIF	ADIF	_	_	CMIF	_	_	TMR1IF	00	00
0Eh	TMR1L	Holding Register for the Least Significant Byte of the 16-bit Timer1								xxxx	xxxx
0Fh	TMR1H	Holding Register for the Most Significant Byte of the 16-bit Timer1							xxxx	xxxx	
10h	T1CON	_	TMR1GE	T1CKPS1	T1CKPS0	T10SCEN	T1SYNC	TMR1CS	TMR10N	-000	0000
19h	CMCON	_	COUT	_	CINV	CIS	CM2	CM1	CM0	-0-0	0000
1Eh	ADRESH(3)	Most Significant 8 bits of the Left Shifted A/D Result or 2 bits of the Right Shifted Result								xxxx	xxxx
1Fh	ADCON0(3)	ADFM	VCFG	_	_	CHS1	CHS0	GO/DONE	ADON	00	0000

Status Register

Reserved	Reserved	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x	
IRP	RP1	RP0	TO	PD	Z	DC	O	ĺ
bit 7							bit 0	

bit 7

IRP: This bit is reserved and should be maintained as '0'

bit 6

RP1: This bit is reserved and should be maintained as '0'

bit 5

RP0: Register Bank Select bit (used for direct addressing)

0 = Bank 0 (00h - 7Fh)

1 = Bank 1 (80h - FFh)

bit 4

TO: Time-out bit

1 = After power-up, CLRWDT instruction, or SLEEP instruction

0 = A WDT time-out occurred

bit 3 PD: Power-down bit

1 = After power-up or by the CLRWDT instruction

0 = By execution of the SLEEP instruction

bit 2 Z: Zero bit

1 = The result of an arithmetic or logic operation is zero

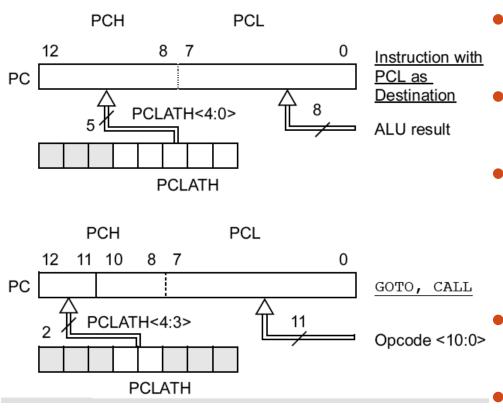
0 = The result of an arithmetic or logic operation is not zero

bit 1 DC: Digit carry/borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions)

For borrow, the polarity is reversed.

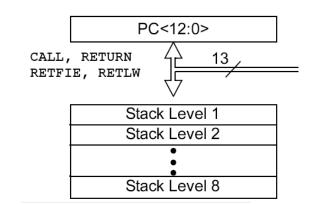
1 = A carry-out from the 4th low order bit of the result occurred

0 = No carry-out from the 4th low order bit of the result


bit 0 C: Carry/borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions)

1 = A carry-out from the Most Significant bit of the result occurred

0 = No carry-out from the Most Significant bit of the result occurred


Note: For borrow the polarity is reversed. A subtraction is executed by adding the two's complement of the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high or low order bit of the source register

PCL and PCLATH

- PC: Program Counter, 13 bits
- PCL (02h): 8 bits, the lower
 8 bits of PC
- PCLATH (0Ah): PC Latch, provides the upper 5 (or 2) bits of PC when PCL is written to
- 1st example: PC is loaded by writing to PCL
- 2nd example: PC is loaded during a CALL or GOTO instruciton

Stack

- 8-level deep x 13-bit wide hardware stack
- The stack space is not part of either program or data space and the stackpointer is not readable or writable.
- The PC is "PUSHed" onto the stack when a CALL instruction is executed, or an interrupt causes a branch.
- The stack is "POPed" in the event of a RETURN, RETLW or a RETFIE instruction execution.
- However, NO PUSH or POP instructions!
- PCLATH is not affected by a "PUSH" or "POP" operation.
- The stack operates as a circular buffer:
 - after the stack has been PUSHed eight times, the ninth push overwrites the value that was stored from the first push.